THE C^* -ALGEBRAS OF ALMOST COMMUTING ISOMETRIES ARE GENERALIZED RFD

TAKAHIRO SUDO

Department of Mathematical Sciences Faculty of Science University of the Ryukyus Nishihara Okinawa 903-0213, Japan email: sudo@math.u-ryukyu.ac.jp

Abstract

We consider the structure of the C^* -algebras generated by almost commuting isometries and show that they are generalized RFD in a sense.

1. Introduction

The C^* -algebras generated by almost commuting unitaries are introduced by Exel ([4] and [5]) and their structure and K-theory are considered by him. Furthermore, it is shown by Eilers and Exel [3] that the C^* -algebras are RFD, i.e., residually finite dimensional, following a seminal paper of Choi [1], in which it is shown that the full group C^* algebra of the free group with two generators is RFD. On the other hand, the C^* -algebras generated by almost commuting isometries and their Ktheory are studied by the author [7].

2000 Mathematics Subject Classification: Primary 46L05.

Keywords and phrases: C^* -algebra, isometry, Toeplitz algebra, RFD.

Received May 23, 2008

© 2008 Scientific Advances Publishers

TAKAHIRO SUDO

In this paper, following [3] we show that the C^* -algebras of almost commuting isometries are generalized RFD (see the definition below). This suggests that the class of generalized RFD C^* -algebras should be interesting and would be important.

2. The Soft Toeplitz Tensor Product

Definition 1.1. Let $C(\mathbb{T}^2)$ be the universal C^* -algebra generated by two commuting unitaries. It is also the C^* -algebra of all continuous functions on the 2-torus \mathbb{T}^2 . For $\varepsilon \in [0, 2]$, the soft torus (of Exel) denoted by $C(\mathbb{T}) \otimes_{\varepsilon} C(\mathbb{T})$ is defined to be the universal C^* -algebra generated by two unitaries $u_{\varepsilon,1}, u_{\varepsilon,2}$ such that $||u_{\varepsilon,2}u_{\varepsilon,1} - u_{\varepsilon,1}|| \le \varepsilon$.

It is shown in [3] that $C(\mathbb{T}) \otimes_{\varepsilon} C(\mathbb{T})$ is RFD, i.e., residually finite dimensional in the sense that for any nonzero element $a \in C(\mathbb{T}) \otimes_{\varepsilon} C(\mathbb{T})$, there exists a finite dimensional representation ρ of $C(\mathbb{T}) \otimes_{\varepsilon} C(\mathbb{T})$ such that $\rho(a) \neq 0$, in other words, there are separating finite dimensional representations of $C(\mathbb{T}) \otimes_{\varepsilon} C(\mathbb{T})$. It is clear that $C(\mathbb{T}^2)$ is RFD.

Definition 1.2. Let \mathfrak{F} be the universal C^* -algebra generated by a proper isometry. It is called Toeplitz algebra. For $\varepsilon \in [0, 2]$, the soft Toeplitz tensor product denoted by $\mathfrak{F} \otimes_{\varepsilon} \mathfrak{F}$ is defined to be the universal C^* -algebra generated by two isometries $s_{\varepsilon,1}, s_{\varepsilon,2}$ such that $\|s_{\varepsilon,2}s_{\varepsilon,1} - s_{\varepsilon,1}s_{\varepsilon,2}\| \leq \varepsilon$. There exists the canonical quotient map from $\mathfrak{F} \otimes_{\varepsilon} \mathfrak{F}$ to $C(\mathbb{T}) \otimes_{\varepsilon} C(\mathbb{T})$ by sending $s_{\varepsilon,j}$ to $u_{\varepsilon,j}$ (j = 1, 2).

It is known (cf. [6]) that \mathfrak{F} is decomposed into the short exact sequence:

$$0 \to \mathbb{K} \to \mathfrak{F} \to C(\mathbb{T}) \to 0,$$

where \mathbb{K} is the C^* -algebra of all compact operators on a separable infinite dimensional Hilbert space. It is easy to see that \mathfrak{F} is not RFD since \mathbb{K} has only one irreducible infinite dimensional representation, i.e., the identity representation.

Definition 1.3. We say that a C^* -algebra is generalized RFD if it has a (finite) composition series of closed ideals such that its subquotients are either RFD or AL, where an AL algebra means an inductive limit of liminary (or CCR) C^* -algebras.

Remark. We may replace being AL with being AI, where an AI algebra means an inductive limit of type I C^* -algebras. In general, a C^* -algebra is of type I if and only if it has a composition series whose subquotients are CCR (see[2]).

By definition, it follows that the Toeplitz algebra \mathfrak{F} is generalized RFD.

Theorem 1.4. The soft Toeplitz tensor product $\mathfrak{F} \otimes_{\varepsilon} \mathfrak{F}$ is generalized *RFD*.

Proof. Recall from [7] that $\mathfrak{F} \otimes_{\varepsilon} \mathfrak{F} \cong E_{\varepsilon} \rtimes_{\alpha \varepsilon} \mathbb{N}$ the semigroup crossed product by \mathbb{N} of natural numbers, where E_{ε} is the C^* -subalgebra of $\mathfrak{F} \otimes_{\varepsilon} \mathfrak{F}$ generated by $t_n = s_{\varepsilon,2}^n s_{\varepsilon,1} (s_{\varepsilon,2}^*)^n$ for $n \in \mathbb{N}$ and n = 0, and the action α_{ε} by endomorphisms is defined by $\alpha_{\varepsilon}(t_n) = s_{\varepsilon,2}t_n s_{\varepsilon,2}^*$ for $n \in \mathbb{N}$ and n = 0. We have the following exact sequence:

$$0 \to \lim \mathbb{K} \to E_{\varepsilon} \to \pi(E_{\varepsilon}) \to 0,$$

where π is the canonical quotient map from E_{ε} to $\pi(E_{\varepsilon}) = \mathfrak{B}'_{\varepsilon}$ by sending t_n to $v_n = u_{\varepsilon,2}^n u_{\varepsilon,1}(u_{\varepsilon,2}^*)^n$ for $n \in \mathbb{N}$ and n = 0, where $\mathfrak{B}'_{\varepsilon}$ is the C^* -algebra generated by unitaries v_n for $n \in \mathbb{N}$ and n = 0, and it is shown that the kernel of π is isomorphic to $\varinjlim \mathbb{K}$, an inductive limit of \mathbb{K} . Therefore, it is extended by taking crossed products by \mathbb{N} that

$$0 \to \lim \mathbb{K} \rtimes \mathbb{N} \to E_{\varepsilon} \rtimes \mathbb{N} \to \pi(E_{\varepsilon}) \rtimes \mathbb{N} \to 0,$$

and $\varinjlim \mathbb{K} \rtimes \mathbb{N} \cong \varinjlim \mathbb{K} \otimes C^*(\mathbb{N}) = \varinjlim \mathbb{K} \otimes \mathfrak{F}$ since the action of \mathbb{N} on $\varinjlim \mathbb{K}$ is trivial. Furthermore, following the methods of Eilers and Exel [3] we can show that $\pi(E_{\varepsilon})$ is RFD, from which for any nonzero element xof $\pi(E_{\varepsilon}) \rtimes \mathbb{N}$, there exists a quotient map ρ from $\pi(E_{\varepsilon}) \rtimes \mathbb{N}$ to $M_l(\mathbb{C}) \rtimes \mathbb{N}$ for some l, and the composition of ρ with the canonical expectation from $M_l(\mathbb{C}) \rtimes \mathbb{N}$ to $M_l(\mathbb{C})$ maps x nonzero. It follows that $\rho(x) \neq 0$. Since $M_l(\mathbb{C}) \rtimes \mathbb{N} \cong M_l(\mathbb{C}) \otimes C^*(\mathbb{N})$ with $C^*(\mathbb{N}) \cong \mathfrak{F}$, further taking a quotient map from $M_l(\mathbb{C}) \otimes C^*(\mathbb{N})$ to $M_l(\mathbb{C})$ implies that $\pi(E_{\varepsilon}) \rtimes \mathbb{N}$ is RFD. Note that

$$0 \to \lim \mathbb{K} \otimes \mathbb{K} \to \lim \mathbb{K} \otimes \mathfrak{F} \to \lim K \otimes C(\mathbb{T}) \to 0,$$

and $\varinjlim \mathbb{K} \otimes \mathbb{K} \cong \varinjlim (\mathbb{K} \otimes \mathbb{K})$ and $\varinjlim \mathbb{K} \otimes C(\mathbb{T}) \cong \varinjlim (\mathbb{K} \otimes C(\mathbb{T}))$ are AL. Hence we obtain the conclusion.

Remark. Note also that $C(\mathbb{T}) \otimes_{\varepsilon} C(\mathbb{T})$ is RFD by [3] and we have the quotient map from $\mathfrak{F} \otimes_{\varepsilon} \mathfrak{F}$ to $C(\mathbb{T}) \otimes_{\varepsilon} C(\mathbb{T})$ by sending $s_{\varepsilon,j}$ to $u_{\varepsilon,j}$ for j = 1, 2. The conclusion above might follow from considering this map and its kernel part.

3. The Soft Tori and the Soft Pointed Tori

Definition 2.1. For $\varepsilon \in [0, 2]$, the soft *n*-torus denoted by $\bigotimes_{\varepsilon}^{n} C(\mathbb{T})$ is defined to be the universal C^{*} -algebra generated by *n* unitaries $u_{\varepsilon, j}$ $(1 \le j \le n)$ such that $||u_{\varepsilon, k}u_{\varepsilon, j} - u_{\varepsilon, j}u_{\varepsilon, k}|| \le \varepsilon$ for $1 \le j, k \le n$.

Definition 2.2. For $\varepsilon \in [0, 2]$, the soft *n*-pointed torus denoted by $\bigotimes_{\varepsilon}^{n} \mathfrak{F}$ is defined to be the universal C^{*} -algebra generated by *n* isometries $s_{\varepsilon, j}$ $(1 \le j \le n)$ such that $||s_{\varepsilon, k}s_{\varepsilon, j} - s_{\varepsilon, j}s_{\varepsilon, k}|| \le \varepsilon$ for $1 \le j, k \le n$.

Remark. Note that the spectrum of \mathfrak{F} is identified with the union of \mathbb{T} and a point, i.e., a pointed torus, from its exact sequence given in Section 2.

Proposition 2.3. The soft n-torus is written as the crossed product of a C^* -algebra by a multi-shift of the group \mathbb{Z} of integers.

The soft n-pointed torus is written as the crossed product of a C^* -algebra by a multi-shift of the semigroup \mathbb{N} of natural numbers.

Proof. First of all, $C(\mathbb{T}) \otimes_{\varepsilon} C(\mathbb{T}) \cong \mathfrak{B}_{\varepsilon} \rtimes \mathbb{Z}$ by [4] using universality, where $\mathfrak{B}_{\varepsilon}$ is the universal C^* -algebra generated by unitaries v_n $(n \in \mathbb{Z})$ such that $||v_{n+1} - v_n|| \leq \varepsilon$, and the action of \mathbb{Z} is the shift on these unitaries. Note that v_n is identified with $u_{\varepsilon,2}^n u_{\varepsilon,1}(u_{\varepsilon,2}^*)^n$ and the action of \mathbb{Z} is in fact the adjoint action by $u_{\varepsilon,2}$.

By the method above, for $1 \leq j \leq n-1$, the C^* -subalgebra generated by two unitaries $u_{\varepsilon,j}$ and $u_{\varepsilon,n}$ in $\bigotimes_{\varepsilon}^n C(\mathbb{T})$ is written as $\mathfrak{B}_{\varepsilon,j} \rtimes \mathbb{Z}$. Extending the action of \mathbb{Z} to (a multi-shift on) the C^* -algebra generated by $\mathfrak{B}_{\varepsilon,j}$ $(1 \leq j \leq n-1)$, we obtain the first conclusion.

Similarly, the second conclusion follows. Indeed, $\mathfrak{F} \otimes_{\varepsilon} \mathfrak{F} \cong E_{\varepsilon} \rtimes \mathbb{N}$, where E_{ε} is the C^* -algebra generated by the elements $s_{\varepsilon,2}^n s_{\varepsilon,1} (s_{\varepsilon,2}^*)^n$ $(n \in \mathbb{N} \text{ and } n = 0)$ and the action of \mathbb{N} is the adjoint action by $s_{\varepsilon,2}$ on the elements (cf. [7]).

Theorem 2.4. The soft n-torus is RFD and the soft n-pointed torus is generalized RFD.

Proof. By the proposition above, $\bigotimes_{\varepsilon}^{n} C(\mathbb{T}) \cong \mathfrak{B}_{\varepsilon}^{n-1} \rtimes \mathbb{Z}$, where $\mathfrak{B}_{\varepsilon}^{n-1}$ is the C^* -algebra generated by $\mathfrak{B}_{\varepsilon,j}$ $(1 \le j \le n-1)$. By (extensive) induction, it follows that $\mathfrak{B}_{\varepsilon}^{n-1}$ is RFD. Indeed, $\mathfrak{B}_{\varepsilon}^{n-1}$ is generated by C^* - subalgebras $\mathfrak{B}_{\varepsilon, n-1}$ and $\mathfrak{B}_{\varepsilon}^{n-2}$ that is RFD by induction, which is

also RFD. Therefore, it follows that $\mathfrak{B}^{n-1}_{\varepsilon} \rtimes \mathbb{Z}$ is RFD by the same argument as in Section 2.

From the above proposition, $\bigotimes_{\varepsilon}^{n} \mathfrak{F} \cong E_{\varepsilon}^{n-1} \rtimes \mathbb{N}$, where E_{ε}^{n-1} is defined as $\mathfrak{B}_{\varepsilon}^{n-1}$, so that that the second claim is proved as shown in Theorem 1.4.

References

- [1] M.-D. Choi, The full C^* -algebra of the free group on two generators, Pacific J. Math. 87(1) (1980), 41-48.
- [2] J. Dixmier, C^* -algebras, North-Holland, 1977.
- [3] S. Eilers and R. Exel, Finite dimensional representations of the soft torus, Proc. Amer. Math. Soc. 130(3) (2001), 727-731.
- [4] R. Exel, The soft torus and applications to almost commuting matrices, Pacific J. Math. 160(2) (1993), 207-217.
- [5] R. Exel, The soft torus: A variationaal analysis of commutator norms, J. Funct. Anal. 126 (1994), 259-273.
- [6] G. J. Murphy, C^* -algebras and Operator Theory, Academic Press, 1990.
- [7] T. Sudo, Continuous fields of C^* -algebras by almost commuting isometries, Int. J. Pure Appl. Math. (to appear).